Theories of Error Back-Propagation in the Brain
نویسندگان
چکیده
منابع مشابه
An Accelerated Error Back - Propagation Learning Algorithm
We propose a method for learning in multilayer perceptrons (MLPs). It includes new self-adapting features that make it suitable for dealing with a variety of problems without the need for parameter re-adjustments. The validity of our approach is benchmarked for two types of problems. The first benchmark is performed for the topologically complex parity problem with a number ofbinary inputs rang...
متن کاملthe effects of error correction methods on pronunciation accuracy
هدف از انجام این تحقیق مشخص کردن موثرترین متد اصلاح خطا بر روی دقت آهنگ و تاکید تلفظ کلمه در زبان انگلیسی بود. این تحقیق با پیاده کردن چهار متد ارائه اصلاح خطا در چهار گروه، سه گروه آزمایشی و یک گروه تحت کنترل، انجام شد که گروه های فوق الذکر شامل دانشجویان سطح بالای متوسط کتاب اول passages بودند. گروه اول شامل 15، دوم 14، سوم 15 و آخرین 16 دانشجو بودند. دوره مربوطه به مدت 10 هفته ادامه یافت و د...
15 صفحه اولFrequency-Based Error Back-Propagation in a Cortical Network
This paper presents a biologically plausible mechanism of back-propagating network output error to previous layers of processing in a particular multi-layer neural network. This mechanism is used in a network that is designed to mimic familiarity discrimination as performed by the perirhinal cortex of the temporal lobe. In the algorithm, the error of the network during an initial classification...
متن کاملLearning in cortical networks through error back-propagation
To efficiently learn from feedback, the cortical networks need to update synaptic weights on multiple levels of cortical hierarchy. An effective and well-known algorithm for computing such changes in synaptic weights is the error back-propagation. It has been successfully used in both machine learning and modelling of the brain’s cognitive functions. However, in the back-propagation algorithm, ...
متن کاملError back-propagation algorithm for classification of imbalanced data
Classification of imbalanced data is pervasive but it is a difficult problem to solve. In order to improve the classification of imbalanced data, this letter proposes a new error function for the error backpropagation algorithm of multilayer perceptrons. The error function intensifies weight-updating for the minority class and weakens weight-updating for the majority class. We verify the effect...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Trends in Cognitive Sciences
سال: 2019
ISSN: 1364-6613
DOI: 10.1016/j.tics.2018.12.005